BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, VOL. 47(12), 3175—3176 (1974)

Absolute Configuration of Some Chiral Cyclopropanes

Kazuyoshi Nishiyama, Jun'ichi Oda, and Yuzo Inouye Institute for Chemical Research, Kyoto University, Uji, Kyoto 611 (Received June 19, 1974)

Synopsis. The absolute configurations of (1S:2R)-(-)-cis-, and (1S:2S)-(+)-trans-1-phenylcyclopropane-1,2-dicarboxylic acids, and (1S:2R)-(-)-cis-, and (1S:2S)-(+)-trans-1-phenyl-1,2-bis(acetoxymethyl)cyclopropanes were established by correlation to (R)-(-)-2,2-diphenylcyclopropane-1-carboxylic acid.

During the course of studies on asymmetric synthesis, we found that establishment of the absolute configuration of a series of chiral cyclopropanes is necessary.

Absolute assignment of configuration is given to trans-, (3) and cis-1-phenylcyclopropane-1,2-dicarboxylic acids (4), and trans-, (5) and cis-1-phenyl-1,2-bis(acetoxymethyl) cyclopropanes (6) by chemical transformations. These chiral cyclopropanes are correlated to (-)-2,2-diphenylcyclopropane-1-carboxylic acid (1) of the known (R)-configuration¹⁾ through the key compound, methyl cyclopropane-1,1,2-tricarboxylate²⁾ (2).

(R)-(-)-2,2-Diphenylcyclopropane-1-carboxylic acid, -231° , was ozonized to give, after esterification of the ozonolysis product with diazomethane, methyl cyclopropane-1,1,2-tricarboxylate (2) having a rotation of -134.8° . The R-configuration is thus assigned to (-)-(2).

Methyl (+)-trans-1-phenylcyclopropane-1,2-dicarboxylate $+134.0^{\circ}$, derived from the partially resolved acid (3), $+85.8^{\circ}$, was converted in the same manner as described above into (+)-(2) with a dextrorotation $+124.6^{\circ}$. From the conversion, the S-configuration can be assigned to the chiral carbon-2 in the parent (+)-(3) and consequently, the S-configuration of another chiral carbon-1 in (+)-(3) reasonably follows from the trans-geometry of carboxyl groups.

The optical purity of (+)-(2) derived from (+)-(3) is 92.4% based on the maximum rotation $+134.8^{\circ}$, so that the value 92.8° is given to (+)-(3) as its maximum rotation, which is in good agreement with the value 92.9° attained by optical resolution via brucine salt. The agreement not only warrants the fact that neither racemization nor fractionation occurred during ozonolysis and the subsequent work-up in the present transformations, but also provides evidence for stereochemical integrity of compounds involved.

The base-catalyzed isomerization of methyl (-)-cis-1-phenylcyclopropane-1,2-dicarboxylate obtained by esterification of the corresponding free acid (-)-(4), -185.3° , afforded (+)-trans-(3)-ester with a dextrorotation of $+126.1^{\circ}$, which is evidently epimeric at the ring carbon-2. It follows that (-)-(4) is assigned to the (1S:2R)-configuration and should possess the maximum rotation -212.0° .

The lithium aluminum hydride reduction of optically pure (+)-(3), followed by acetylation of the reduction mixture gave the corresponding diol acetate, (+)-1-phenyl-trans-1,2-bis(acetoxymethyl)cyclopropane (+)-

Ph H i O3 MeOOC H

Ph COOH ii
$$CH_2N_2$$
 MeOOC COOMe

$$(R)-(-)-1 \qquad \qquad \underbrace{\begin{array}{c} (-)-2 \\ (+)-2 \end{array}}_{\text{ii } CH_2N_2}$$
Ph CH₂OAc Ph COOH

$$(+)-5 \qquad \qquad (+)-3$$

Ph H i CH₂N₂

$$(+)-3 \qquad \qquad \downarrow \text{ii } CH_2N_2$$

$$(+)-4 \qquad \qquad \downarrow \text{ii } CH_2N_2$$

$$(+)-4 \qquad \qquad \downarrow \text{ii } CH_2N_2$$

(5), $+5.4^{\circ}$, while the same treatment of (-)-cis-(4)-ester -178.8° afforded (-)-1-phenyl-cis-1,2-bis(acet-oxymethyl)cyclopropane -45.5° , (-)-(6). The (1S: 2S)-configuration of (+)-(5) and (1S: 2R)-configuration of (-)-(6) are evident, the maximum rotation of the latter being inferred to be -52.1° .

The Brewster calculation of conformational asymmetry³⁾ predicts the sign and magnitude of molecular rotation in fair agreement with those observed.

	$[\mathbf{M}]^{\circ}_{\mathtt{calcd}}$	$[\mathbf{M}]^{\circ}_{\mathrm{obsvd}}$
(R) - (2)	-135	-291
(1S:2S)-(3)	+135	+191
(1S:2R)-(4)	-210	-437
(1S:2S)-(5)	+60	+14
(1S:2R)-(6)	-90	-137

Experimental

Specific rotations were measured on a Perkin Elmer 241 polarimeter at 25 °C in 1% methanol solution unless otherwise stated.

Ozonolysis. According to the procedure we previously described,⁴⁾ (—)-2,2-diphenylcyclopropane-1-carboxylic acid $[\alpha]_D$ —231.1° (chloroform) was ozonized in acetic acid at room temperature and the resulting product was esterified by the standard method with diazomethane to give, after isolation by preparative vpc, methyl cyclopropane-1,1,2-tricarboxylate (—)-(2). The IR- and NMR-spectra were identical with those of the authentic specimen.²⁾ n_D^{80} 1.4477, $[\alpha]_D$ —134.8°.

In the same way, (+)-trans-1-phenylcyclopropane-1,2-dicarboxylic acid $[\alpha]_D + 85.5^\circ$, (+)-(3), prepared and resolved according to McCoy,⁵⁾ gave (+)-(2) whose identity was fully substantiated by means of spectroscopy, n_3^{90} 1.4477, $[\alpha]_D$ +124.6°.

Epimerization of methyl (-)-cis-1-phenylcyclopropane-1,2-dicarboxylate (50 mg: $[\alpha]_D$ -178.8°; (-)-(4)-methyl ester) was effected by treating with methyl phenylacetate (100 mg) and sodium hydride (30 mg) in DMF (1.5 ml) at 40 °C for 1 hr and, after neutralization, the product was subjected to preparative vpc to give pure (+)-(3)-methyl ester (28 mg); $[\alpha]_D$ +126.1°.

Resolution of (\pm) -(3), mp 198.5—199 °C,⁵⁾ and of (\pm) -(4), mp 152.5—153 °C⁵⁾ was performed *via* the brucine salt by fractional crystallizations from methanol eventually to give (+)-(3), mp 144 °C, $[\alpha]_D$ +92.9° (methyl ester, n_D^{25} 1.5153, $[\alpha]_D$ +144.3°), and (-)-(4), mp 154 °C, $[\alpha]_D$ -185.3°, (methyl ester, n_D^{25} 1.5133, $[\alpha]_D$ -178.8°) respectively.

For the lithium aluminum hydride reductions, the method by Inamasu *et al.*⁶⁾ was followed: (+)-(3)-methyl ester $[\alpha]_D + 144.3^\circ$ gave, after purification by preparative vpc, (+)-1-phenyl-*trans*-1,2-bis(acetoxymethyl)cyclopropane (+)-(5), n_D^{25} 1.5004, $[\alpha]_D$ +5.4°, while (-)-(4)-methyl ester $[\alpha]_D$ -178.8° yielded the *cis*-counterpart (-)-(6), n_D^{25} 1.5018,

 $[\alpha]_D$ $-45.5^{\circ}.$ Identification of each was obtained by IRand NMR- spectroscopies.

Partial support of this work by a grant (966047) in aid from the Ministry of Education is gratefully acknowledged (J. O.).

References

- 1) H. M. Walborsky and F. M. Hornyak, J. Amer. Chem. Soc., 77, 6026 (1955); idem., ibid., 83, 2517 (1961): C. Djerassi, K. Undheim, and A. Weidler, Acta Chem. Scand., 16, 1147 (1962).
 - 2) E. Buchner and R. von der Heide, Ber., 38, 3112 (1905).
 - 3) J. H. Brewster, J. Amer. Chem. Soc., 81, 5483 (1959).
- 4) K. Nishiyama and Y. Inouye, This Bulletin, 44, 2795 (1971).
 - 5) L. L. McCoy, J. Amer. Chem. Soc., 84, 2246 (1962).
- 6) S. Inamasu, M. Horiike, and Y. Inouye, This Bulletin, 42, 1393 (1969).